Nuclear and mitochondrial DNA reveal contrasting evolutionary processes in populations of deer mice (Peromyscus maniculatus).

We investigated a major geographic break in mitochondrial DNA (mtDNA) haplotypes in deer mice, Peromyscus maniculatus, by analysing spatial variation in a 491-bp fragment of the mtDNA control region from 455 samples distributed across a north-south transect of 2000 km in Western North America. To determine whether the mtDNA break was reflected in the nuclear genome, we then compared spatial variation in 13 nuclear microsatellites of 95 individuals surrounding the mtDNA break.

Dysregulation of cell-to-cell connectivity and stomatal patterning by loss-of-function mutation in Arabidopsis chorus (glucan synthase-like 8).

Patterning of stomata, valves on the plant epidermis, requires the orchestrated actions of signaling components and cell-fate determinants. To understand the regulation of stomatal patterning, we performed a genetic screen using a background that partially lacks stomatal signaling receptors. Here, we report the isolation and characterization of chorus (chor), which confers excessive proliferation of stomatal-lineage cells mediated by SPEECHLESS (SPCH).

The genetic architecture of divergence between threespine stickleback species

The genetic and molecular basis of morphological evolution is poorly understood, particularly in vertebrates. Genetic studies of the differences between naturally occurring vertebrate species have been limited by the expense and difficulty of raising large numbers of animals and the absence of molecular linkage maps for all but a handful of laboratory and domesticated animals.

The genetic architecture of parallel armor plate reduction in threespine sticklebacks

How many genetic changes control the evolution of new traits in natural populations? Are the same genetic changes seen in cases of parallel evolution? Despite long-standing interest in these questions, they have been difficult to address, particularly in vertebrates. We have analyzed the genetic basis of natural variation in three different aspects of the skeletal armor of threespine sticklebacks (Gasterosteus aculeatus): the pattern, number, and size of the bony lateral plates.

Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks

Hindlimb loss has evolved repeatedly in many different animals by means of molecular mechanisms that are still unknown. To determine the number and type of genetic changes underlying pelvic reduction in natural populations, we carried out genetic crosses between threespine stickleback fish with complete or missing pelvic structures. Genome-wide linkage mapping shows that pelvic reduction is controlled by one major and four minor chromosome regions. Pitx1 maps to the major chromosome region controlling most of the variation in pelvic size.

The master sex-determination locus in threespine sticklebacks is on a nascent Y chromosome

BACKGROUND: Many different environmental and genetic sex-determination mechanisms are found in nature. Closely related species can use different master sex-determination switches, suggesting that these developmental pathways can evolve very rapidly. Previous cytological studies suggest that recently diverged species of stickleback fish have different sex chromosome complements. Here, we investigate the genetic and chromosomal mechanisms that underlie sex determination in the threespine stickleback (Gasterosteus aculeatus).

Subscribe to