Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio

The zebrafish has become a major model system for biomedical research and is an emerging model for the study of behaviour. While adult zebrafish express a visually mediated shoaling preference, the onset of shoaling behaviour and of this preference is unknown. To assess the onset of these behaviours, we first manipulated the early social environment of larval zebrafish subjects, giving them three model shoaling partners of the same pigment phenotype.

Critical early roles for col27a1a and col27a1b in zebrafish notochord morphogenesis, vertebral mineralization and post-embryonic axial growth.

BACKGROUND: Fibrillar collagens are well known for their links to human diseases, with which all have been associated except for the two most recently identified fibrillar collagens, type XXIV collagen and type XXVII collagen. To assess functions and potential disease phenotypes of type XXVII collagen, we examined its roles in zebrafish embryonic and post-embryonic development. METHODOLOGY/PRINCIPAL FINDINGS: We identified two type XXVII collagen genes in zebrafish, col27a1a and col27a1b. Both col27a1a and col27a1b were expressed in notochord and cartilage in the embryo and early larva.

Defective adult oligodendrocyte and Schwann cell development, pigment pattern, and craniofacial morphology in puma mutant zebrafish having an alpha tubulin mutation.

The processes of myelination remain incompletely understood but are of profound biomedical importance owing to the several dysmyelinating and demyelinating disorders known in humans. Here, we analyze the zebrafish puma mutant, isolated originally for pigment pattern defects limited to the adult stage. We show that puma mutants also have late-arising defects in Schwann cells of the peripheral nervous system, locomotor abnormalities, and sex-biased defects in adult craniofacial morphology.

Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest.

Pigment cells of the zebrafish, Danio rerio, offer an exceptionally tractable system for studying the genetic and cellular bases of cell fate decisions. In the zebrafish, neural crest cells generate three types of pigment cells during embryogenesis: yellow xanthophores, iridescent iridophores and black melanophores. In this study, we present evidence for a model whereby melanophores and iridophores descend from a common precursor whose fate is regulated by an interplay between the transcription factors Mitf and Foxd3.

Heat shock protein 60 modified with O-linked N-acetylglucosamine is involved in pancreatic beta-cell death under hyperglycemic conditions.

The objective of this study was to identify proteins modified with O-linked N-acetylglucosamine (O-GlcNAc) in pancreatic beta-cells and to understand their roles in cell death under hyperglycemic conditions. Here we report that heat shock protein 60 (HSP60) is modified with O-GlcNAc. Levels of O-GlcNAcylated HSP60 increased twofold in response to hyperglycemic conditions. HSP60 is a chaperonin known to bind to Bax in the cytoplasm under normoglycemic conditions. Under hyperglycemic conditions, Bax detached from O-GlcNAcylated HSP60 and translocated to mitochondria.

Subscribe to